The polyamine oxidase inhibitor MDL-72,527 selectively induces apoptosis of transformed hematopoietic cells through lysosomotropic effects.
نویسندگان
چکیده
Polyamine oxidase functions in the polyamine catabolic pathway, converting N1-acetyl-spermidine and -spermine into putrescine (Put) and spermidine (Spd), respectively, thereby facilitating homeostasis of intracellular polyamine pools. Inhibition of polyamine oxidase in hematopoietic cells by a specific inhibitor, N,N'-bis(2,3-butadienyl)-1,4-butanediamine (MDL-72,527), reduces the levels of Put and Spd and induces the accumulation of N1-acetylated Spd. Although previously thought to be relatively nontoxic, we now report that this inhibitor overrides survival factors to induce cell death of several immortal and malignant murine and human hematopoietic cells, but not of primary myeloid progenitors. Cells treated with MDL-72,527 displayed biochemical changes typical of apoptosis, and cell death was associated with the down-regulation of the antiapoptotic protein Bcl-X(L). However, enforced overexpression of Bcl-X(L), or treatment with the universal caspase inhibitor zVAD-fmk, failed to block MDL-72,527-induced apoptosis in these hematopoietic cells. Despite decreases in Put and Spd pools, MDL-72,527-induced apoptosis was not blocked by cotreatment with exogenous Put or Spd, nor was it influenced by overexpression or inhibition of the polyamine biosynthetic enzyme ornithine decarboxylase. Significantly, MDL-72,527-induced apoptosis was associated with the rapid formation of numerous lysosomally derived vacuoles. Malignant leukemia cells were variably sensitive to the lysosomotropic effects of MDL-72,527, yet pretreatment with the ornithine decarboxylase inhibitor L-alpha-difluoromethylornithine sensitized all of these leukemia cells to the deleterious effects of the inhibitor by stimulating its intracellular accumulation. The lysosomotropic nature of select polyamine analogues may, thus, provide a novel chemotherapeutic strategy to selectively induce apoptosis of malignant hematopoietic cells.
منابع مشابه
Detoxification of the Polyamine Analogue N-Ethyl-N- [(cycloheptyl)methy]-4,8-diazaundecane (CHENSpm) by Polyamine Oxidase
Purpose: Analogues of the naturally occurring polyamines, alkylated on both terminal amines, are being developed as anticancer drugs. Because bisalkylated derivatives of putrescine (1,4-diaminobutane) are potent inhibitors of the flavin adenine dinucleotide-dependent polyamine oxidase (PAO), we asked whether PAO could detoxify synthetic bisalkylated polyamines with chain lengths longer than put...
متن کاملRapid induction of apoptosis by deregulated uptake of polyamine analogues.
Treatment of Chinese hamster ovary cells with alpha-difluoromethylornithine for 3 days, followed by exposure to cycloheximide, led to an unregulated, rapid and massive accumulation of polyamine analogues. This accumulation led to cell death by apoptosis within a few hours. Clear evidence of DNA fragmentation was seen in response to both N-terminally ethylated polyamines and to polyamines contai...
متن کاملDetoxification of the polyamine analogue N1-ethyl-N11-[(cycloheptyl)methy]-4,8-diazaundecane (CHENSpm) by polyamine oxidase.
PURPOSE Analogues of the naturally occurring polyamines, alkylated on both terminal amines, are being developed as anticancer drugs. Because bisalkylated derivatives of putrescine (1,4-diaminobutane) are potent inhibitors of the flavin adenine dinucleotide-dependent polyamine oxidase (PAO), we asked whether PAO could detoxify synthetic bisalkylated polyamines with chain lengths longer than putr...
متن کاملThat Is Inducible by Polyamine Analogue Exposure Cloning and Characterization of a Human Polyamine Oxidase
Mammalian polyamine catabolism is under the control of two enzymes, spermidine/spermine N-acetyltransferase and the flavin adenine dinucleotide-dependent polyamine oxidase (PAO). In this study, the cloning and initial characterization of human PAO is reported. A 1894-bp cDNA with an open reading frame of 1668-bp codes for a protein of 555 amino acids. In vitro transcription/translation of this ...
متن کاملA small molecule polyamine oxidase inhibitor blocks androgen-induced oxidative stress and delays prostate cancer progression in the transgenic adenocarcinoma of the mouse prostate model.
High levels of reactive oxygen species (ROS) present in human prostate epithelia are an important etiologic factor in prostate cancer (CaP) occurrence, recurrence, and progression. Androgen induces ROS production in the prostate by a yet unknown mechanism. Here, to the best of our knowledge, we report for the first time that androgen induces an overexpression of spermidine/spermine N1-acetyltra...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cancer research
دوره 59 19 شماره
صفحات -
تاریخ انتشار 1999